#### 【画像情報研究会】

#### 平成 26 年度 夏季学術大会報告

今年度の夏季学術大会における画像情報研 究会は「逐次近似法を理解しよう!」をテーマ に掲げ、教育講演2演題と特別講演1演題お よびシンポジウムが催された。参加者は午前 61名、午後68名であった。

近年、放射線診療の場において、20年前の 教科書には掲載されていない画像再構成法が 広く使われるようになってきた。中でも逐次近 似法はコンピュータの処理能力に比例してそ の適応範囲が拡大してきている。

午前中は、逐次近似法を使う目的の一つであ るノイズの低減について、その発生原理と改善 方法の基礎的な講演がなされた。年々、撮影装 置や画像処理のブラックボックス化が進んで いるが、本講演ではその中身を少しでも覗くこ とができたのと同時に開発者の苦労をも垣間 見ることができた。

午後からは、圧縮センシングも含めた画像再 構成原理についての特別講演と「逐次近似法を 理解しよう! | と題した各画像検査モダリティ 固有の原理と臨床応用についてのシンポジウ ムが行われた。特別講演は講師の学生教育経験 をもとにした解りやすい内容で構成されてお り、学生に戻った気持ちで勉強できた。シンポ ジウムでは、核医学領域が最初に本法を臨床利 用した経緯もあり、画像が出来上がるまでの過 程を具体的に解説された。X線CT領域では特 に我が国で問題となっている放射線被曝低減 について解説された。トモシンセシスについて は、今回のシンポジウムの中で最も新しい技術 であることから、原理も含めてその画像評価方 法も解説された。最後の総合討論では会場から も活発な意見が飛び交い、本領域に対する関心 の高さが伺えた。

本報告書では、学術大会のプログラムを記載 し、講演の抄録とスライドの一部も記載した。 代表世話人 島根大学 内田幸司

#### 「夏季学術大会プログラム」

日時 平成 26 年 7 月 6 日 (日) 10:00~15:30

- 会場 岡山大学鹿田キャンパス
  - Junko Fukutake Hall (J ホール)
- テーマ 「逐次近似法を理解しよう!」
- 【午前の部】 10:00~12:00 司会 広島大学病院 西丸英治

#### ◆教育講演 I

「ノイズの発生メカニズムと低減および利用 に関する画像技術」

香川高等専門学校 本田道隆

#### ◆教育講演Ⅱ

- 「フィルタによる画質改善」 広島国際大学 川下 郁生
  - 【午後の部】 13:00~15:30 司会 山口大学医学部附属病院 久冨庄平

島根大学 内田幸司

#### ◆特別講演

「逐次近似法の基礎と圧縮センシングによる 少数投影からの画像再構成」

首都大学東京 篠原広行

◆シンポジウム

「核医学領域における逐次近似画像再構成法」
 倉敷中央病院 松友紀和

・「X線CT検査:逐次近似再構成の臨床応用 と被ばく低減」

広島大学病院 木口雅夫

・「トモシンセシスにおける IR 法の有用性」 鳥取大学医学部附属病院 福井亮平

◆総合討論



### 今日お話する内容

- 1. 画像に重量する構造的ノイズとその発生原因、 および一般的な対策
- あまり本質的なものではないが、故障や調整不良のシステムで 画像に障害陰影を与えるノイズと対策
- 2. ランダム性を有するノイズの発生原因と理論 的なアプローチ(分析法)
- 放射線像に本質的に重量するノイズ、特に量子モトルと熱維音
   ノイズ理論の復習と推奨する計測法や分析法
- 3. ノイズ低減手法と利用法について
- システム側の低減手法の紹介、および画像処理による低減法
   ノイズは低減すべきものだが、利用することもある























- ・ノイズの発生原因と少しばかりの理論的復習
- ・回路系ノイズの基礎的な説明
- ・計測法に関する補足



























































#### 画像上のランダムノイズを低減させるには?

#### ·ノイズ量(ノイズの標準偏差)を低減させる。

物理的な低減。 普通、ノイズ低減とはこのことを指す。

・ノイズの周波数特性を相対的に増強する。

知覚的な低減。 画像技術に通用するノイズ低減の一方式。

#### ・ノイズをダイナミックに高速で動かす。

知覚的な低減。 画像技術に通用するノイズ低減の一方式。













|                                                                                                                                                                                                                                                   | 画質改善策                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ディシタル画像のMTF<br>$M^{(i)}_{rest}(u_{i}) = \left  \frac{(M^{(i)}_{rest}(u_{i}))M^{(i)}_{rest}(u_{i})}{\sum_{i=1}^{n} \sum_{j=1}^{n} \delta(u_{i} - \frac{u_{i}}{2u}) - \frac{u_{i}}{2u} \right  \frac{M^{(i)}_{rest}(u_{i})}{M^{(i)}_{rest}(u_{i})}$ | <ul> <li>・ 逆フィルタはノイズが考慮されていない。</li> <li>処理過程でノイズが発生する場合は使用不可能</li> </ul> |
| www.com オーバーオールNIF                                                                                                                                                                                                                                | <ul> <li>ウィーナフィルタは検出器のボケ補正に有効。</li> <li>ノイズ対策のため高周波成分が抑制される。</li> </ul>  |
| ≫050000 検出器のMTE(アナログ)<br>●001600 サンプリングアバーチャのMTE                                                                                                                                                                                                  | 画質劣化を完全に復元できる手段はない。                                                      |
| ミミュション・○ 標本化開数の同波数スペクトル<br>360(5km) フィルタのMTE<br>2004, 5km) ディスプレイのMTE                                                                                                                                                                             | ボケ補正(鮮鋭化)と平滑化(ノイズ抑制)を<br>組み合わせて行う必要がある。                                  |

# 画質改善策

| ボケ有                        | <b>甫正: 鮮鋭化処理</b>              | ・ PSFに      |
|----------------------------|-------------------------------|-------------|
| 空間フィルタ                     | 空間周波数フィルタ                     | の畳み         |
| ・ポケマスクフィルタ                 | • ボケマスクフィルタ                   | 4000000     |
| ・鮮鋭化フィルタ                   | ・高周波強調フィルタ                    | AL A        |
|                            |                               | 121-1-1-1-1 |
| ノイズ                        | <b>⑤滅:平滑化処理</b>               | <u> </u>    |
| 空間フィルタ                     | 空間周波数フィルタ                     | LINT        |
| ・ガウシアンフィルタ                 | <ul> <li>ガウシアンフィルタ</li> </ul> | HHHH        |
| 「•メディアンフィルタ                | ・バターワースフィルタ                   | 1111111     |
| <sub>上線形</sub> ↓・バイラテラルフィル | 1/5                           |             |
| ・逐次近似フィルタ                  |                               | 11111       |
| (TV法)                      |                               | THHT        |
|                            |                               |             |

# 空間フィルタと点広がり関数の関係

• PSFによるボケの発生と空間フィルタの畳み込み積分は同じ意味を持つ。









原画像

USM(3x3)

US<u>M(7x7)</u>







# マルチ周波数処理の周波数特性



#### ボケ補正のための鮮鋭化のまとめ 鮮鋭化処理である程度のボケ補正が可能。 • レスポンスが0となるボケ関数の補正は困難。 高周波成分のノイズも強調してしまう。 - 63 レスポンス $\mathcal{L} \subseteq \mathcal{L}$ 0 ĥ., de 1,44 0.1 150 1 cycles/pixels dis 24 14 周波数

# ノイズ低減のための平滑化

- ガウシアンフィルタ
- バターワースフィルタ
- ・ メディアンフィルタ
- 逐次近似フィルタ(TV法)

# ガウシアンフィルタ

- ・ 代表的な線形の平滑化フィルタのひとつ。
- 実空間、周波数空間いずれもガウス分布状となる。







# バイラテラルフィルタ

正規分布の重み付きガウシアンフィルタ
二つののの値が大きすぎるとテクスチャも失われる。













# 逐次近似フィルタ: TV(total variation)法

- エッジ保存型の非線形平滑化フィルタ
- 最小化問題の解を求めるために処理時間を要する。
- エッジを除く高周波成分はノイズとして抑制される。
   (ランダムノイズとともにテクスチャが失われる。)
- 一般的なTV法では保存される情報がエッジのみ。
   医療分野では、線や点構造も保存対象とすべき。
- 保存対象の陰影の大きさを選択できるような改良が 望まれる。(wavelet など)





# まとめ

#### ・ 画質改善のためのフィルタ処理を中心に解説した。

- ・現在注目されている逐次近似フィルタ(TV法)は、 エッジを保存しながらノイズを低減できるが、 テクスチャの情報も失われることに注意を要する。
- ・TV法にはさらに改良の余地がある。将来的には 医療分野でも広く用いられる可能性が高い。



## 「逐次近似法の基礎と少数投影からの圧縮セ ンシングによる画像再構成」

首都大学東京 篠原広行

X線CT(CT),磁気共鳴イメージング(MRI), 陽電子放射型断層撮影(PET),単光子放射型 断層撮影(SPECT)では,投影切断面定理に 基づく解析的画像再構成法のフィルタ補正逆 投影法(FBP法)が用いられている.一方, PET, SPECTでは,光子の計測がポアソン分 布に従うことを考慮した統計的画像再構成法 の最尤推定一期待値最大化(ML-EM)法,そ の高速演算を実現した OS-EM 法が開発され た.PET, SPECT は少ない計数値に起因する 統計雑音の影響を強く受けるが,ML-EM 法 (OS-EM法)は FBP 法に比較し統計雑音を 抑制でき臨床に広く用いられている.

逐次近似画像再構成法は,仮定した画像(初 期画像)から計算される投影(順投影)と計測 データ(投影データ)を比較し,その差を反復 計算で次第に縮小し再構成画像を得る.今日で は様々な逐次近似画像再構成法が CT に普及 し,MRI について研究されている.本講演の 前半では,はじめに,FBP 法について Ramp フィルタ, Shepp-Logan フィルタ, Ramp-Hanning フィルタによる再構成像の分 解能と雑音増幅係数の関係を述べる.次に,代 数的逐次近似法,最小二乗法の特異値分解を用 いた解法,最小二乗法の逐次近似解を紹介し, FBP 法と最小二乗法の関係について一般化逆 行列を用い整理する.その後,ML-EM 法, OS-EM 法の原理と再構成像を示す.

後半では, 近年の情報科学の発展によって注 目されている圧縮センシングを用いた画像再 構成について概説する. CT の投影は直線サ ンプリング数と投影角度数 (ビュー数)によっ て特徴づけられる. 直線サンプリング数は 1 投影角度あたりの投影数を示す. 投影角度数は 被写体の周囲 360 度あるいは 180 度について どのくらいの投影を収集するかを示す.FBP 法における逆投影に伴う線状のアーチファク トを抑制するには,標本化定理から投影角度数 Mは直線サンプリング数 Nよりも多く必要な ことが知られている.少数投影からの圧縮セン シング (Compressed Sensing: CS) による画 像再構成が CT や MRI において大きな関心を 集めるようになった. 圧縮センシングによって 原画像が疎の性質をもつ画像(非ゼロの画素数 が少ない画像でスパース画像という)に変換さ れる場合には,少ない投影角度数から画像再構 成を行える.例えば,Shepp-Logan ファント ムは微分し勾配画像にすると,原画像よりもゼ ロを多く含むスパース画像に変換される.

圧縮センシングによる画像再構成のキーポ イントは,原画像がスパース画像に変換可能な ことである.この変換には全変動(Total Variation:TV)やウエーブレット変換などが 用いられる.TV は画像の全変動を示す指標 であり,雑音を抑制する手法として画像処理に 用いられている.はじめに,圧縮センシングに おいて重要な役割を果たすL1ノルム(ベクト ルの大きさを測る尺度をノルムと呼び,L1ノ ルムはベクトルの成分の絶対値を足し算した もの),TVについて述べる.次に,TVノルム を正則化に用いた圧縮センシングによって,直 線サンプリング数 N = 256,投影角度数 M =16 /180 度から Shepp-Logan ファントムの再構成 像が得られることを示す.

- 1) フィルタ補正逆投影法(FBP法)
- 2) 代数的逐次近似法
- 3) 最小二乗法と特異値分解
- 4) 最小二乗法の逐次近似解
- 5) 統計的逐次近似法
- 6) L1 ノルムと全変動(Total Variation: TV)
- 7) 圧縮センシングによる画像再構成

| 日本放射線技術学会 中国·四国部会<br>画像情報研究会<br>平成26年7月6日 岡山大学 | 内容                                                                                                                                |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 逐次近似法の基礎と圧縮センシング<br>による少数投影からの画像再構成            | <ol> <li>1) フィルタ補正逆投影法(FBP法)</li> <li>2) 代数的逐次近似法</li> <li>3) 最小二乗法と特異値分解</li> <li>4) 最小二乗法の逐次近似解</li> <li>5) 統計的逐次近似法</li> </ol> |
| 首都大学東京 篠原広行                                    | 6) L <sub>1</sub> ノルムと全変動(Total Variation: TV)<br>7) 圧縮センシングによる画像再構成                                                              |





![](_page_17_Figure_0.jpeg)

フィルタ補正逆投影法 (FBP法)  
逆投影の点広がり関数 PSF 
$$h(x,y) = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{r}$$
  
PSFの2次元フーリエ変換  
 $H(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) e^{-i2\pi(ux+vy)} dx dy = \frac{1}{\sqrt{u^2 + v^2}} = \frac{1}{k}$   
Rampフィルタ補正と逆投影  
 $f(x,y) = \int_{0}^{\pi} \left\{ \int_{-\infty}^{\infty} P(k,\theta) |k| e^{i2\pi ks} dk \right\} d\theta$   
Ram-Lak フィルタ  
 $h(ma) = \begin{cases} 1/4a^2 & m = 0\\ -1/(\pi ma)^2 & m : odd\\ 0 & m : even \end{cases}$ 

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

| 画像再構成フィルタの                                                              | の分解能と雑音                                                                                  | 音増幅係数                                                   | Ramp-Hanningフィルタによる再構成像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| フィルタ係数の二乗和                                                              | $Ram - Lak$ $f_4$ $Shepp - Logan$ $f_2$ $f_1$                                            | 1/12<br>1/14.4<br>1/20<br>1/25<br>1/133                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 分解能 R とフィルタ補正<br>投影の分散 $\sigma^2(p')$<br>$R^3 = \frac{B}{\sigma^2(p')}$ | $ \begin{cases} Ram - Lak \\ f_4 \\ Shepp - Logan \\ f_2 \\ f_1 \\ f_{0.5} \end{cases} $ | 1/1066<br>1<br>0.833<br>0.6<br>0.480<br>0.090<br>0.0113 | $f_1$<br>$f_1$<br>$f_1$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_2$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$<br>$f_3$ |

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

フィルタ補正逆投影法と最小二乗法の関係最小二乗法の解法1 特異値分解(SVD)フィルタ補正逆投影法最小二乗法の解法1 特異値分解(SVD)フィルタ処理 逆投影フィルタ処理 逆投影
$$f \approx \{2D filter\}B\{y\}$$
 $\longleftrightarrow f \approx (\overline{C^T}C)^{-1} \overline{C^T}y$  $f \approx \{2D filter\}B\{y\}$  $\longleftrightarrow f \approx (\overline{C^T}C)^{-1} \overline{C^T}y$  $f \approx \{1D filter\}\{y\}\}$  $\longleftrightarrow f \approx \overline{C^T}(\overline{CC^T})^{-1}y$  $f \approx B\{\{1D filter\}\{y\}\}$  $\longleftrightarrow f \approx \overline{C^T}(\overline{CC^T})^{-1}y$  $H(k) = |k|$ 評価関数  $Q(f) = \|Cf - y\|_2^2 = (Cf - y)^T (Cf - y)$ FBP法は、はじめに逆投影し次にフィルタ補正するのと、  
はじめにフィルタ補正し次に逆投影しても同じ.評価関数  $f \approx (\overline{C^T}C)^{-1}C^Ty, C = UWV^T$ 

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_0.jpeg)

# PETIによる放射濃度計測の定量性

Table 1. Mean and standard deviation (S.D.) calculated from ROI drown on liver of thorax phantom.

| Event collected<br>[million counts] | Processing method | Mean<br>[k Bq∕ml] | S.D.<br>[k Bq/ml] |
|-------------------------------------|-------------------|-------------------|-------------------|
| 2500                                | MAC               | 27.90             | 0.48              |
| 10                                  | MSRP-OSC          | 27.42             | 0.96              |
| 10                                  | MRP-OSC           | 26.46             | 1.44              |
| 10                                  | FBP               | 44.73             | 11.54             |
| 30                                  | FBP+SAC           | 33.67             | 1.44              |

MAC: measured attenuation correction, MSRP-OSC: median and segmented root prior ordered subset convex, MRP-OSC: median root prior ordered subset convex, FBP: filtered back projection, SAC: segmented attenuation correction.

Sakaguchi K, et al. Ann Nucl Med 22: 269-279, 2008

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

| 事前確率(事前知識)と画像再構成                                       | ベクトルのノルム                                                                                                                                                                                                           |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 原画像は有効視野内に限定されそれ以外はゼロ<br>画素間で値は滑らかに変化<br>いくつかの領域に分けられる | 1次元ベクトル(数値の集まり)<br>$a = (1,2,0,0,3,4)^T$<br>$a = (1,2,0,0,3,4)^T$<br>ベクトルの大きさを測る尺度をノルムと<br>呼ぶ、 $L_0$ ノルムはベクトルの成分のうち<br>0でない成分の数を足し算したもの、 $L_1$<br>ノルムは成分の絶対値を足し算したもの、<br>$L_2$ ノルムは成分の二乗を足し算しその                    |
|                                                        | 平方根をとったものである.<br>$L_0 = \ a\ _0 = 4$ 0でない値の数<br>$L_0 = \ a\ _0 = 4$ 0でない値の数                                                                                                                                        |
| 事前知識:原画像は原点に中<br>心があり円内の値は一定<br>1方向の投影から再構成できる         | $L_{1} = \ \boldsymbol{a}\ _{1} = \sum_{i=1}^{N}  a_{i}  = 1 + 2 + 3 + 4 = 10$ 総社<br>$L_{2} = \ \boldsymbol{a}\ _{2} = \sqrt{\sum_{i=1}^{N} a_{i}^{2}} = \sqrt{1^{2} + 2^{2} + 3^{2} + 4^{2}} = \sqrt{30}$ 二乗和の平方根 |

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

# 圧縮センシングによる再構成像

#### (c) AART\_TV\_20dB

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

投影角度数16/180度からの再構成像 20 dBは投影の平均値の約1%, 30 dBは約 0.1%, 40 dBは約0.01%の雑音レベル.

## 圧縮センシングによる少数投影からの 画像再構成

圧縮センシングによる画像再構成のキーポイント は、原画像がスパース画像に変換可能なことで ある.この変換には全変動(Total Variation:TV)の 他、ウエーブレット変換などが用いられている.

#### 謝辞

逐次近似法の基礎と圧縮センシングによる少数投影から の画像再構成について,講演の機会を与えていただいた, 画像情報研究会代表世話人 島根大学医学部放射線医 学講座 内田幸司先生はじめ,画像情報研究会の皆様に 厚くお礼申し上げます.

データ作成の一部は文部科学省科学研究費補助金基盤 研究(C)(課題番号 26461832)の援助を受けて行われた.

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_34_Picture_0.jpeg)

|                                  | 背景                                                                                                                       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 7592T中国·西国部会員手学術大会 国像情報研究会       | <ul> <li>2012年CT装置更新に伴い、当院に初めて逐次近似応用<br/>再構成が搭載された装置が導入された、しかし、東芝社<br/>製AIDR 3Dの特性を十分活かしたパラメータ設定が困難<br/>であった。</li> </ul> |
| 逐次近似再構成の臨床応用と被ばく低減               |                                                                                                                          |
|                                  | <ul> <li>今回、臨床使用時における逐次近似応用再構成の被ばく<br/>低減効果および回覧向上、逐次近似応用再構成の特性<br/>を活かした臨床使用方法(評価)について述べていきたい。</li> </ul>               |
| 広島大学病院診療支援部                      |                                                                                                                          |
| 木口雅夫 藤岡知加子 横町和志                  | <ul> <li>また、ATDR 3Dから新たに開発された逐次近似再構成</li> </ul>                                                                          |
| 西丸英治 安田秀剛 石風呂実                   | (Full Interactive Reconstruction)の画質改善と被ばく低<br>減効果について述べていきたい。                                                           |
| 🕅 Iliroshima University Hospital |                                                                                                                          |

| 逐次近似副       | 「構成の        | D臨床広用      | 目と補ばく          | く低温       |
|-------------|-------------|------------|----------------|-----------|
| VER COLLOND | a matched a | A PROPERTY | and the second | a montain |

逐次近似応用再構成法の原理

逐次近似再構成の画質特性

画像ノイズ低減効果とアーチファクト経滅効果

低線量撮影のルーチン化(低管電圧撮影)

低被ばく・高画質化

Full interactive reconstruction

Hiroshima University Hospital

# 逐次近似再構成の臨床応用と被ばく低減 逐次近似応用再構成法の原理

逐次近似再構成の画質特性 画像ノイズ低減効果とアーチファクト軽減効果 低線量撮影のルーチン化(低管電圧撮影) 低被ぱく・高画質化 Full interactive reconstruction

Hiroshima University Hospital

![](_page_35_Picture_12.jpeg)

#### MDCTラインアップ@hiroshima-u.

![](_page_36_Picture_1.jpeg)

Aquilion ONE ( 编载 Area detector CT )

![](_page_36_Picture_3.jpeg)

LightSpeed VCT vision (64DAS MDCT)

![](_page_36_Picture_5.jpeg)

Aquilion ONE VISION Edition (外來: Area detector CT)

![](_page_36_Picture_7.jpeg)

LightSpeed Ultra 16 (16 DAS MDCT)

## 逐次近似再構成

| 建火虹俱67     | 用再慎族 (IR)    |
|------------|--------------|
| AIDR 3D    | 東芝           |
| ASIR       | OFUO         |
| ASIR-V     | GERG         |
| iDOSE4     | フィリップス       |
| SAFIRE     | シーメンス        |
| Intelli IP | 日立           |
| 逐次近似再      | 衛成 (Full IR) |
| Veo        | GEHC         |
| IMR        | フィリップス       |

![](_page_36_Figure_11.jpeg)

| パラメータ名                                             | Yohme FC連動時の<br>管電調任業率                                         | 国際ノイズ低減効果                              | ストリークアーチファクト<br>補正効果                    |
|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Weak                                               | 25%                                                            | Æ                                      | 低                                       |
| Afilia                                             | 50%6                                                           | 1                                      | 1 N N N N N N N N N N N N N N N N N N N |
| Standard                                           | 75%                                                            |                                        |                                         |
| Strong                                             | 75%                                                            | 高                                      | <b>A</b> .                              |
| <u>X線フォト:</u><br>同じパラ。<br>将正确度が<br>1、同一板<br>2、同一XM | / <u>数</u><br>メータ種を選択していた<br>肉くなる<br>写体でもX線出力を小さ<br>創力でも被写体りイン | ても,検出層でのX線<br>(くするほど,ノイズ<br>〔が大きいほど,ノイ | フォトン数が少ないはと<br>収蔵効果が高くなる<br>ズ伝滅効果が高くなる  |

#### 逐次近似再構成の臨床応用と被ばく低減

逐次近似応用再構成法の原理

#### 逐次近似再構成の画質特性

画像ノイズ低減効果とアーチファクト軽減効果

低線量攝影のルーチン化(低管電圧撮影)

低被ばく・高画質化

Full interactive reconstruction

#### 検討項目

#### ノイズ低減に起因する面質変化を評価する

#### 使用機器および評価方法

#### - ノイズ評価

Catphan: SD法,NSP法 ・分解能評価 ワイヤーファントム:MTF Catphan:スリット部視道評価 ・低コントラスト分解能 QAファントム(GEHC) :プロファイルカーブによる 平均コントラスト法

![](_page_37_Picture_5.jpeg)

#### 撮影条件

撮影方法:ヘリカルスキャン 管電圧:120 kV 管電流:50~500 mA ローテーションタイム :0.5 sec

## 解像度評論

ビッチファクタ:0.56 撮影スライス厚 0.5 mm x 32列

#### 画像内槽成

@像再構成:TCDT+

FBP AJDR 3D Weak, Mild , Standard , Strong 再春成開数: FC14 ( 秋部 ) 貢像スライス厚: 1 mm, 5 mm

![](_page_37_Figure_13.jpeg)

![](_page_37_Figure_14.jpeg)

![](_page_37_Figure_15.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

| ASiR (GEHC)<br>iDOSE <sup>4</sup> (Philips)<br>SAFIRE (Stemens)<br>AIDR 3D (Toshiba)<br>Model-based iterative optimisation<br>Veo (GEHC) |          |
|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| iDOSE <sup>4</sup> (Philips)<br>SAFIRE (Stemens)<br>AIDR 3D (Toshiba)<br>Model-based iterative optimisation<br>Veo (GEHC)                |          |
| SAFIRE (Stemens)<br>AIDR 3D (Toshiba)<br>Model-based iterative optimisation<br>Veo (GEHC)                                                |          |
| AIDR 3D (Toshiba)<br>Model-based iterative optimisation<br>Veo (GEHC)                                                                    |          |
| Model-based iterative optimisation<br>Veo (GEHC)                                                                                         |          |
| Ven (GEHC)                                                                                                                               |          |
| DAD (Philling)                                                                                                                           |          |
|                                                                                                                                          |          |
|                                                                                                                                          |          |
|                                                                                                                                          | $\smile$ |
|                                                                                                                                          | $\frown$ |
|                                                                                                                                          |          |
|                                                                                                                                          |          |

| boom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CEBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Philips                                 | Sicucio                   | Teshiba                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-----------------------------|
| A STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transmitted sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 141                       | PARTICIPATION IN CONTRACTOR |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000000000000000000000000000000000000 | S. and the second second  | 100000000                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR Level                                | Lord Lands                | 1000                        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lat. Mpri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHINES                                  | Will Longith              | 20000 http://               |
| 1049-111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 (100 (100 (100 (100 (100 (100 (100  | 7-9                       | Prov.                       |
| Martin La All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 mGy, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dose Level<br>8 mGy, 84 mGy, 1          | 20 mGy                    | 411.<br>247.                |
| 6.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | periodicity of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 10.00                     | 126                         |
| 10.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 49                        | 4.1                         |
| MICHINE FOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                       | 10 · · · ·                | 10.                         |
| Plana Berth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and Hopping and                         | AL PROPERTY.              | 1000                        |
| Reference of the second | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scap condition                          | 111                       | 84/V-                       |
| Freedort, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second sec | 88C                                     | 41.                       | 8422                        |
| Noted Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PERMIT AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                      | skl                       | 28                          |
| Aur 10, 1973 1. 1974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contraction of                          | Conception and the second | the all the                 |
| to aviation of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 63 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brain kernel                            |                           | 1 C                         |
| been to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                           |                             |

|   | 12 mGy |       |       |      | 48 LUCy |      |    | 84 wCy |    |     |      |     | 120 mC) |    |     |     |    |     |    |    |
|---|--------|-------|-------|------|---------|------|----|--------|----|-----|------|-----|---------|----|-----|-----|----|-----|----|----|
| - | it'    | N.    | 10    | 1    | ABES    | 18.7 | -  | 10     | #1 | MAX | 1994 |     | 10      | 10 | MRI | 180 | -  | 105 | 85 | VB |
|   |        | 144   |       |      |         |      |    | 68     |    | 110 | 12   |     | 69      |    | 811 | 20  |    |     |    | 5  |
|   | 10     |       | 的     | 2    |         | 8    |    | 3      |    | 8   | 8    |     |         |    | E)  | 24  |    |     |    | é  |
|   | 0      | 200   |       | 10   | E       | 12   | 1  | TES    |    | 1   | 1    | 127 |         |    | R.  |     | 10 | 10  |    |    |
|   | T      | All a | THE R | M    |         |      |    | 10     |    | 3   |      |     | 3       |    | 8   | 2   |    |     |    |    |
|   | 6      | 63    | 63    | 10   | 10      | 10   | 10 | 10     | E. | 10  | 0    | 80  | 8       | 0  | 80  | 0   | £  | 80  |    | £, |
|   |        |       |       | 6    |         | 13   |    | 13     |    |     | 27   |     | 61      |    | 111 | 8   |    |     |    |    |
|   |        |       |       |      |         | 民    |    | 83     |    |     |      |     | 89      |    |     | 21  |    | 12  |    |    |
| 1 | 10     |       | 1     | 1    |         | 3    |    | 10     |    |     |      | 174 |         |    |     |     | 1  |     |    |    |
|   | 1      | 13    | 品     |      |         |      |    | 1      |    |     | -6   |     | 1       |    |     | 10  |    | Sa  |    |    |
|   | 19     | 15    | 25    | BPK. |         | £2.  |    | 129    |    |     | 23   |     | 89      |    |     | 21  |    |     |    |    |

|         | R de trait en en |          |      |         |       |        |          |       |      |          |       |      |  |  |
|---------|------------------|----------|------|---------|-------|--------|----------|-------|------|----------|-------|------|--|--|
| Tester: |                  | 000      |      | 19.01.0 |       |        | 3        | 1000  |      | 11:0405  |       |      |  |  |
|         | 1013-001         | 47%      | 1011 | 66-50   | 1476  | 38.5   | CHUND.   | 5199  | 286  | 16.5.2   | 52%   | 250  |  |  |
| -       |                  |          |      |         |       |        |          |       |      |          |       | -    |  |  |
| 0.0     | 1+++             | 1.100    | 1044 | 10046   | 3.400 | 1.14   | 1444     |       | U be | 125.65   | -     | 164  |  |  |
|         | - 615            | 1.6      |      | - 444   | 1.4   |        |          | -     | 261  | 1.1.8    |       | 1.0  |  |  |
|         | \$3,64×          | 11       |      | 7.67.6  | 1.07  | 11463  |          | -14-  | 10   | 1.000    | - 44  | 114  |  |  |
| 184     | 1221             | 1.18     |      | 1047    | 10    | 10     | - viela  |       | 241  | 1444     | 1.46  | 1.40 |  |  |
| 100     | 6, 61            | 1.1.1    |      | 1.146   | 140   | 1.14   | 1.641    | . pre | 1.84 | -18110   | +     | 4.4  |  |  |
| ALC: N  | anti-            | in.      | 144  |         |       |        |          |       | 1    | 140      |       | 1    |  |  |
| -       |                  |          |      | 4.11    |       | _      | ##)      |       |      | ·        | -     | 1.1  |  |  |
| -       |                  | 1.00     | 110  | =111    |       | 1.4    | 114.44   | -     | 144  | ± make   |       | 1.00 |  |  |
| 1       |                  |          |      | 41      |       | Silin. | +11      | 1.8   | 1.44 |          | 141   | 1.44 |  |  |
| 246     | 1.0041           | 1.00     | 11   | 1.14    | - 19  | 11-    | = 111    |       | 14   | 1.0000   | -     | 1.34 |  |  |
| 1/84-1  |                  |          |      |         |       |        |          |       |      |          |       | 100  |  |  |
|         | 1.77             |          | -    | 1.16    | 1.840 | 2.11   | 1.4.4    | -     |      | 1000     | 1.000 | 14   |  |  |
| 10.00   | 1014             | 1.00     | 11   | 113.00  |       | 18     | 112-04   |       | 14   | 11,000   | . 10. | 1.0  |  |  |
| - 10-   | 6/14             | 1.14     | 14   | - 1.17  | 1.75  |        | 11.04    | 1.54  | 104  | 11-10-5  | 100   | 1.5  |  |  |
| 1.0     | 10.000           |          | 1.10 | There's | -     |        | 1000     | - 18  | - 11 | 1.00     | 1.00  |      |  |  |
| A       |                  |          |      |         |       |        |          |       |      |          |       |      |  |  |
|         | 0014             | 3.5      | 11   | 111     | 0.000 | . (1)  | 1, 194.0 | -     | 1.0  | -15-22   | -     | 1.4  |  |  |
|         | 1.22             |          | - 41 |         |       | 144    | 1444     | . 4   | 1    | 1 -      |       | 3.8  |  |  |
| 1.00    | 111-             | - 24     | 2.45 | - tite  | 4-    | 1111   | 1.015    | 145   | . U  | inturne' | 12    | 1.00 |  |  |
| =       | 1274             | (- et .) | 1.1  | 11.12   | 1.00  | 11     | 1000     |       | .M   | 1172     | 1.0   | 1.44 |  |  |

i.

![](_page_40_Figure_3.jpeg)

![](_page_40_Figure_4.jpeg)

![](_page_40_Figure_5.jpeg)

| 1.22   |                                       | irit :         | 画像描出の違いとついて                |
|--------|---------------------------------------|----------------|----------------------------|
| Silw.m |                                       | 201 -          |                            |
| OK.    |                                       |                |                            |
|        | TT ( #4                               | 00110          |                            |
| ju     | 115.88                                | (4.11)         | 速次近似応用再構成法の總量に対する業職は運際によ   |
| -112   | 317,787                               | - 101 PA       |                            |
| 840    | 11,189                                | 2010012        | り全く光なり,撮影条件による画像への影響も変化する. |
| 1000   | 41,71                                 | 201101         |                            |
| 1.4    |                                       |                |                            |
| .99    | ALC:NO.                               | 384,210,113    | 湾次近似広田亜樺成友鵬床広田する際には これらの   |
| 0      | 14.000                                | (#2 10)        |                            |
| -      | 14.36                                 | 22.1000        | 影響因子を考慮,理解して使用する必要がある。     |
| 81     |                                       | 20.044         |                            |
| ·      | 41510                                 | 390000         |                            |
| C-art  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                |                            |
| 101    | 14,580                                | AR 1111        |                            |
| 30     | 11.80                                 | 300 (m         |                            |
| 14411  | 01388                                 | 16.110         |                            |
| 1.5    | 11-20                                 | 42-111         |                            |
| 36.44  | bar to the                            | Sector and the |                            |
| 10     | 21.244                                | 20111122       |                            |
| 240    | 1026                                  | 208.11         |                            |
| 10     | 11.2%C                                | 14.71          |                            |
| 10     | 11.92                                 | C102.011       |                            |

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

## 逐次近似再構成の臨床応用と被ばく低減

遂次近似応用再構成法の原理

遂次近似再構成の画質特性

画像ノイズ低減効果とアーチファクト経減効果

低線量撮影のルーチン化(低管電圧撮影)

低被ばく・高画質化

Full interactive reconstruction

#### 低線量肺がんCT検診への応用

) 勝部ファントム N-1 ラングマン:株式会社京都科学

 「100
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Hiroshima University Hospital

![](_page_44_Figure_6.jpeg)

![](_page_44_Picture_7.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

#### 開胸歴のための胸膜液着診断CT 骨肉順・肺転移;左下葉切除術前

![](_page_45_Picture_3.jpeg)

Dynamic volume scan 100 kV 30 mA 0.35 sec 10sec FC51\_4TDR-3D Mild CTDIvol 18.5 mGy DLP 295.8 mGy + cm

## 逐次近似再構成の臨床応用と被ばく低減

逐次近似応用再構成法の原理 逐次近似再構成の画質特性 画像ノイズ低減効果とアーチファクト軽減効果 低線量撮影のルーチン化(低管電圧撮影) 低被ばく・高画質化 Full interactive reconstruction

# RSNA 2013

#### LL-PHE4176

Understanding the Principle, Image Characteristics, and Radiation Dose of Full- and Hybrid Iterative Reconstruction (IR) at CT

> Wataru Fukumoto Toru Higaki , Fuminari Tatsugami, Yuko Nakamura Kazuo Awat Akira Taniguchi , et al.

> > Iliroshima University Hospital

Full interactive reconstruction 東芝メディカルシステム株式会社の国内薬事未承認品(WIP) が含まれる内容です。 申し訳ありませんが、表示はひかえさせていただきます。

# 結 語

逐次近似応用再構成法は、面像ノイズ改善、アーチファクトの 低減により、診断能の向上、被ばく線量低減が明確となった、 しかし、線量低減に対する挙動はメーカにより全く異なり、撮影 条件による面像への影響も変化する。

低線量操影のルーチン化に加えて、ノイズ低減十高周波再構成関数による高面質化、低管電圧撮影への応用、動態面像。機能面像による評価が可能となった。

今後、Full iterative reconstructionの導入により、更なる被ばく 低減および高面質化(ノイズ低減+高分解能)が期待される。

![](_page_47_Figure_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

#### トモシンセシスの再構成

#### 第15回 夏季学術大会 at 岡山大学

第15回 夏季学術大会 at 岡山大学

シフト加算法の問題点を解決するために、現在のトモシンセシス再 構成法として広く用いられているのがフィルタ補正逆投影法(FBP) である。これは、トモシンセシス撮影を角度に制限のあるCTの画像 収集と捉え、限られた角度情報から断層画像を再構成する。

![](_page_49_Figure_4.jpeg)

#### シフト加算法の問題点を解決するために、現在のトモシンセシス再 構成法として広く用いられているのがフィルタ補正逆投影法(FBP) である。これは、トモシンセシス撮影を角度に制限のあるCTの画像 収集と捉え、限られた角度情報から断層画像を再構成する。

![](_page_49_Picture_6.jpeg)

トモシンセシスの再構成

![](_page_49_Picture_7.jpeg)

シフト加算法に比べ計算時間は延長するが、障害陰影を抑制し、コ ントラストも改善することができる。

![](_page_49_Figure_9.jpeg)

![](_page_49_Picture_10.jpeg)

![](_page_50_Figure_0.jpeg)

#### FBP画像との比較

FBP画像との比較

#### 第15回 夏季学術大会 at 岡山大学

第15回 夏季学術大会 at 岡山大学

IR法では当然計算時間が延長するため、再構成画像表示までの時間は掛かるが、高機能なワークステーションにより検査に支障が 無い程度まで再構成時間は短縮されている。

![](_page_50_Figure_4.jpeg)

#### FBP画像との比較

第15回 夏季学術大会 at 岡山大学

IR法では当然計算時間が延長するため、再構成画像表示までの時間は掛かるが、高機能なワークステーションにより検査に支障が無い程度まで再構成時間は短縮されている。

![](_page_50_Figure_8.jpeg)

![](_page_50_Picture_9.jpeg)

#### FBP画像との比較

## 第15回 夏季学術大会 at 岡山大学

IR法では当然計算時間が延長するため、再構成画像表示までの 時間は掛かるが、高機能なワークステーションにより検査に支障が 無い程度まで再構成時間は短縮されている。

![](_page_50_Picture_13.jpeg)

#### 断層厚の比較

![](_page_50_Figure_15.jpeg)

#### 第15回 夏季学術大会 at 岡山大学

![](_page_51_Figure_0.jpeg)

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_2.jpeg)